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Abstract. We propose a novel face recognition method that represents
and classifies face images in the feature space. It first assumes that in
the feature space the test sample can be well expressed by a linear com-
bination of the training samples, and then it exploits the obtained linear
combination to perform face recognition. We also present the foundation,
rationale, and characteristics of, as well as the differences between, our
method and conventional kernel methods. The analysis shows that our
method is a representation-based kernel method and works in the feature
space. This method might be able to outperform the representation-based
methods that work in the original space. The experimental results show
that our method partially possesses the properties of “sparseness” and
is able to reduce greatly the effects of noise and occlusion in the test sam-
ple. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/
1.OE.51.1.017205]
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1 Introduction
Automated face recognition, which usually depends on a
machine to recognize the identity of humans, has attracted
much attention in recent years.1–7 This technique can help
the machine to identify people, interact with people, or
provide better service for the host. If a machine not only
can recognize the host but also identify his facial expression,
it will be able to provide us with more help.2,3 Indeed, auto-
mated face recognition enables machines to interact with
people in a human way. Real-world applications of face
recognition have much concern about the robustness2 and
high computational efficiency4 of the algorithm. Nowadays
high-performance hardware can allow the machine to satisfy
the computational efficiency requirement of automated face
recognition, whereas the robustness of previous face recog-
nition algorithms was not good. Previous face recognition
algorithms could not deal well with the noise and occlusion
of the face. The noise is usually caused during the process of
image capture and transmission. In a complex environment it
is also possible that a portion of the face image is occluded
by other objects. However, as shown in Sec. 4, our face
recognition method is robust against occlusion and noise.

Automated face recognition8–15 methods normally depend
on a training process in which a set of training samples is
used to obtain a solution and then the solution is used to
classify test samples. However, a recently proposed pattern
recognition method did not make use of any training proce-
dure.8,16 This method first decomposes a test sample as the
sum of an error vector and a linear combination of the train-
ing samples. It then evaluates the contribution of the training
samples of each class to represent the test sample, and clas-
sifies the test sample into the class that makes the greatest
contribution to the representation. This method has been

applied to solve problems in areas such as clustering, feature
selection, face recognition, and signal processing.16–23

The method proposed in Refs. 8 and 16 suffers from the
following problem: a test sample is represented by only a
sparse linear combination of the training samples. In other
words, when it represents the test sample with a linear com-
bination of all the training samples, it assumes that a large
portion of training samples have zero coefficient. For face
recognition, the number of the training samples is usually
much smaller than the dimensionality of the sample, and
using the method in Refs. 8 and 16 to represent the test sam-
ple must cause representation error. Moreover, a large repre-
sentation error might lead to incorrect classification of the
test sample. The method also has a high time complexity.

In this paper, we propose a novel method that uses all the
training samples in the feature space to represent and classify
test samples. Because the kernel function is used, the pro-
posed method is also a kernel-based method, referred to as
a kernel and representation—based method (KRBM). We
provide a detailed analysis of the proposed method, showing
its foundation, rationale, characteristics, and time complex-
ity. We also compare it with other kernel methods. Because
the proposed method implicitly uses a nonlinear mapping to
transform the samples into a new space, it is possible that the
total new samples, generated by the implicit transform, are
more representative of the sample space. The experimental
results show that the proposed method not only is able to
obtain a good classification result but also somewhat pos-
sesses the property of sparseness; that is, the majority of the
coefficients of the linear combination have small absolute
values. Sparseness has been shown to be helpful in achieving
a good classification performance.16 Though the method in
Ref. 16 also achieves a sparse representation, it does so with
a costly, deliberated, iterative solution scheme and a special
constraint condition. Our method can be implemented easily
at a low computational cost and without any constraint con-
dition. A further advantage of our method is that it uses only0091-3286/2012/$25.00 © 2012 SPIE

Optical Engineering 017205-1 January 2012/Vol. 51(1)

Optical Engineering 51(1), 017205 (January 2012)

Downloaded from SPIE Digital Library on 09 Feb 2012 to 66.165.46.178. Terms of Use:  http://spiedl.org/terms



an n-dimensional vector to denote the original sample, where
n is the number of the training samples. This means that our
method might greatly reduce the dimension of the original
image sample.

The paper is organized as follows: Sec. 2 describes the
proposed method; Sec. 3 provides some analysis of our
method; and Sec. 4 presents the experimental results.
Section 5 offers our conclusions.

2 Methods
Our method first represents the test sample in the feature
space through a linear combination of all the training sam-
ples and then uses the representation result to classify the test
sample. Let A1 : : :An denote n training samples in the origi-
nal space. Let Y be a test sample in the original space. The
feature space is derived from the original sample space
by using a nonlinear mapping ϕ. If test sample ϕðYÞ in
the feature space can be approximately described by a linear
combination of all the training samples ϕðA1Þ: : :ϕðAnÞ in
the feature space, then we have ϕðYÞ ¼

P
n
i¼1 βiϕðAiÞ.

Assuming that any sample in the feature space is a column
vector, we can rewrite ϕðYÞ ¼

P
n
i¼1 βiϕðAiÞinto the follow-

ing equation:

ϕðYÞ ¼ΦΨ; (1)

where Φ ¼ ½ϕðA1Þ: : :ϕðAnÞ�, Ψ ¼ ðβ1 : : : βnÞT . Since Φ
might not be a square matrix and ϕ is unknown, we cannot
directly solve Eq. (1). However, Eq. (1) has the following
normal equation:

ΦTϕðYÞ ¼ΦTΦΨ: (2)

If we use the definition of kernel function kðAi;AjÞ ¼
ϕTðAiÞϕðAjÞ,

24,25 Eq. (2) can be transformed into

KY ¼ KΨ; (3)

where

KY ¼

0
BBB@

kðA1; YÞ

..

.

kðAn; YÞ

1
CCCA; K ¼

0
BBB@

kðA1;A1Þ: : : kðA1;AnÞ

..

.

kðAn;A1Þ: : : kðAn;AnÞ

1
CCCA;

Ψ ¼

0
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..

.
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If K is not singular, the solution of Eq. (3) can be solved
by using Ψ ¼ K−1KY . If K is nearly singular, we can use
Ψ ¼ ðK þ μIÞ−1KY (μ is a positive constant and I is the iden-
tity matrix) to get the solution.

It is clear that KY ¼ ðK1 : : :KnÞΨ ¼ β1 K1 þ : : :
þ βn Kn, where Ki ¼ ½kðA1;AiÞ kðA2;AiÞ : : :
kðAn;AiÞ�T . This shows that the issue of representing the
test sample in the feature space has been transformed into
a new issue of representing Ky by Ki, which denotes the
ith column of matrix K. We refer to Ki as kernel vector
of the ith training sample. It seems that training samples

from different classes make different contributions to repre-
senting Ky. We evaluate the contribution of each class and
classify the test sample as follows: first, we calculate the
sum of the contribution of the training samples from each
class. We assume that all the training samples from the
kth class are As : : :At. Thus the contribution to representing
the test sample of the kth class is gk ¼ βs Ks þ : : : þ βt Kt.
The smaller the error ek ¼ kKY − gkk2 is, the greater the con-
tribution of the kth class is. We identify the class that makes
the greatest contribution to representing Y (i.e., the class that
corresponds to the minimum error) and classify Y into the
same class. This tends to classify the test sample into the
class that is the most similar to this sample because a
small ek means that the linear combination of the training
samples of the kth class is close to the test sample.

3 Analysis of Our Method and Comparison
with Other Methods

In this section we will provide the rationale for our proposed
method, describe its characteristics, and compare it with
other methods.

3.1 Rationale and Characteristics of Kernel and
Representation–based Methods

This subsection shows the rationale and characteristics of the
KRBM. Supposing that the nonlinear mapping ϕ is known,
we can solve Eq. (2) using ΦTϕðYÞ. It is easy to show that
ΦTϕðYÞ ¼ ½ϕTðA1ÞϕðYÞ: : :ϕTðAnÞϕðYÞ�T and ðΦTΦÞij ¼
ϕTðAiÞϕðAjÞ; i; j;¼ 1; 2; : : : ; n. ϕðYÞand ϕðAiÞare the test
sample and training sample, respectively, in the feature space.
We note that ϕTðAiÞϕðYÞ ¼ kϕðAiÞk· kϕðYÞkcos θi, where
θi denotes the angle between vectors ϕðAiÞand ϕðYÞ. As a
result, if all the samples in the feature space, including ϕðAiÞ
and ϕðYÞ, are unit vectors, then
½ϕTðA1ÞϕðYÞ: : :ϕTðAnÞϕðYÞ�T will denote the cosine simi-
larity between the test sample and each of training samples in
the feature space. Provided that two arbitrary training sam-
ples are orthogonal in the feature space, both ΦTΦ and
ðΦTΦÞ−1 will be the identity matrices. We then can obtain
Ψ ¼ ½ϕTðA1ÞϕðYÞ: : :ϕTðAnÞϕðYÞ�T ¼ ½cos θ1 : : : cos θn�T .
This shows that, under these assumptions, the solution vector
of our method consists of n components that represent the
cosine similarity between training samples and the test sam-
ple in the feature space. As shown in Sec. 2, the issue of using
a linear combination of all the training samples to represent
the test sample can be formulated by KY ¼ β1K1 þ : : :
þ βn Kn. The experimental result shows that if in the feature
space the ith training sample has a large similarity with the
test sample, βi usually is large. As a result, the contribution of
the ith training sample, i.e., βi Ki, also is large. If the training
samples from one class are similar to the test sample, we can
say that the class is similar to the test sample. Based on the
classification rule shown earlier, the KRBM tends to classify
the test sample into the class that is the most similar to it. This
partially demonstrates the rationale of the KRBM.

Our method has two characteristics. First, it produces one
linear system and exploits the solution of the system to clas-
sify the test sample. Second, it solves the linear system at a
low cost of time complexity. This can be shown as follows:
supposing that each class has m training samples and the
number of all the training samples is n ¼ Lm, where L is
the number of the classes, we know that our method should
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and kernel Fisher discriminant analysis (KFDA).33 These
kernel methods are typical examples of kernel-based trans-
form methods and the transform result of the test sample in
the feature space is its projection onto the eigenvector or
discriminant vector in the feature space. As a result, each
component of the transform result will be a linear combina-
tion of n kernel functions, where n is the number of the train-
ing samples. It is clear that, when representing test samples
of conventional kernel methods, one must consider that
different test samples can be represented by a linear combi-
nation of different kernel functions, and these different test
samples share the same linear combination coefficients.

Our method also can be viewed as a transform-based
kernel method. It first implicitly transforms the test sample
into a new space and then tries to express the test sample in
the new space. As shown earlier, using the kernel function,
we can convert the issue of expressing the test sample into an
issue defined as in Eq. (3). Once the Ψ in Eq. (3) is obtained,
the coefficients of the linear combination are determined. As

a result, we also can consider KY ¼ β1K1 þ : : : þ βn Kn as
the transform result of test sample Y . We note that both βi
and Ki (i ¼ 1; 2; : : : ; n) vary with Y . In other words, when
our method uses a linear combination of the training samples
in the feature space to represent the test sample, both the
kernel function and coefficient vary with the test sample.
This makes our method very different from the conventional
kernel methods. Moreover, because our method constructs a
special linear combination to represent the test sample, it is
better able to represent the test sample than the conventional
kernel methods.

4 Experimental Results
We used the AR,34,35 Olivetti Research Laboratories
(ORL),36 and Yale37 face database to test our method.
Figure 1 shows some face images from the AR database.
We adopted the Gaussian kernel function kðxi; xjÞ ¼
exp½−kxi − xjk2∕ð2σÞ�, where σ is the parameter of the
kernel function. We partitioned each face database into a
training set and test set. We took the first five face images
per class of the ORL and Yale databases as training samples
and treated the remainder as the test samples. We took the
first 16 face images per class and the remainder of the
AR database as training samples and the test samples,
respectively. We first resized each face image into half of
the original size by using the down-sampling method pro-
vided in Ref. 32. Because our method is directly applicable
for only a one-dimensional vector, we converted the face
image sample into a one-dimensional vector in advance.
Because these one-dimensional vectors are high dimen-
sional, we reduced the dimensionality by exploiting principal
component analysis (PCA) to transform these vectors into
n − 1 dimensional vectors, where n is the number of all

Fig. 5 Ten test images with random salt and pepper noise. Ten
percent of the pixels were corrupted by the noise.

Table 2 Classification error rates of the proposed method on face databases in which the test sample was corrupted by “salt and pepper”
noise.

Database Training Samples Per Class (n) Our Method PCA LDA KFDA*

ORL 5 0.095 (1.0e7) 0.110 0.195 0.340 (1.0e7)

Yale 5 0.044 (1.0e7) 0.089 0.067 0.189 (1.0e7)

AR 16 0.268 (1.0e6) 0.308 0.979 0.459 (1.0e7)

The number in parentheses denotes the value of the parameter of the kernel function.
*As shown in Ref. 33.

Table 1 Classification error rates of the proposed method on original test samples from the face databases.

Database Training Samples Per Class (n) Our Method PCA LDA KFDA*

ORL 5 0.08 (1.0e7) 0.090 0.150 0.100(1.0e7)

Yale 5 0.044 (1.0e7) 0.067 0.044 0.122(1.0e7)

AR 16 0.254 (1.0e6) 0.303 0.725 0.396 (1.0e7)

The number in parentheses denotes the value of the parameter of the kernel function.
*As shown in Ref. 33.
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